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1 Введение
В представленной работе рассматриваются некоторые простые мо-
дели покера двух лиц. Формализация моделей изложена в [2] и в [4].
Частично эти модели рассматриваются в [5]. При этом в некоторых
расчетах был использован математический аппарат, описанный в [6].

Все рассмотренные модели покера проистекают одна из другой.
Каждая следующая по сути является усложнением предыдущей. Са-
мый начальный и примитивный вариант игры - игра двух лиц с од-
ним раундом и фиксированной ставкой. Далее мы можем предоста-
вить опцию первому игроку выбрать ставку из фиксированного мно-
жества. Далее увеличить количество раундов. В перспективе можно
рассматривать модели покер нескольких лиц.

В разделе 2 формализуется модель покер, вводятся обозначения,
определяется вид оптимальных стратегий каждого из игроков. Оп-
тимальные стратегии формируются на основе средней функции вы-
игрыша игрока. Представлено доказательство оптимальности стра-
тегий. Также в конце этого раздела исследуется вопрос единствен-
ности оптимальных стратегий. Показано, что существует несколь-
ко оптимальных стратегий у первого игрока. Такие дополнительные
стратегии соответствуют блеф-стратегии игрока.

В разделе 3 модель чуть усложняется. А именно первый игрок
получает возможность выбрать ставку из множества(ранее ставка
была фиксированной). Вначале рассматривается простейший вари-
ант с двумя ставками, но затем исследуется общий случай с 𝑛 став-
ками. Также, как и в предыдущем разделе, происходит подробный
вывод оптимальных стратегий. В конце раздела исследуются асимп-
тотические свойства полученных стратегий.

В разделе 4 исследуется модель покера с несколькими раундами
ставок(до этого был лишь 1 раунд). Предполагается, что колода карт
состоит из старших и младших карт. Старшая карта достается перво-
му игроку с вероятностью 𝑃 . Оба игрока знают значение 𝑃 , но лишь
первый игрок знает, какая карта ему досталась. В модели допускает-
ся, что на старшей карте первый игрок всегда ставит, а на младшей
он либо блефует, либо пасует. Также, как и для всех предыдущих
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моделей, здесь приведен вывод оптимальных стратегий.
Хочется отметить, что строгий математический вывод оптималь-

ных решений в таких моделях положительно сказывается на покер-
ную индустрию. В настоящее время покер развивается. Создаются
все новые и новые программы, предлагающие расчет оптимальных
стратегий в тех или иных ситуациях. Причем это актуально не толь-
ко для безлимитного техасского холдема, так и для других(чуть ме-
нее популярных видов покера), например: пот-лимитная омаха, стад,
разз и другие. Наукоемкие исследования позволяют создать более
качественный покерный софт и помочь игрокам улучшить свои по-
керные навыки.
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2 Покер. Теоретико-игровая модель
В качестве математической модели этой игры рассмотрим игру двух
лиц. В начале игры игроки делают взнос, равный единице. После
этого они получают две карты достоинством 𝑥 и 𝑦, не имея инфор-
мации о карте противника. Первый игрок имеет выбор, либо спасо-
вать, и тогда он теряет свой взнос, либо сделать ставку 𝑐, где 𝑐 > 1.
В последнем случае ход переходит ко второму игроку, и он имеет те
же возможности. Если он пасует, то теряет свой взнос, в противном
случае игроки открывают карты и тогда выигрывает тот, чья карта
больше. Заметим, что значения карт игроков случайны, и в этом слу-
чае мы должны определить вероятностный характер всевозможных
исходов.

Предположим, что значения карт лежат в интервале от 0 до 1
и все эти значения равновероятны, т. е. случайные величины 𝑥 и
𝑦 имеют равномерное распределение на интервале [0, 1]. Давайте
определим стратегии в этой игре. Каждый из игроков знает лишь
свою карту, и значит, его решение должно основываться лишь на
этом. Поэтому под стратегией первого игрока в этой игре мы будем
понимать функцию 𝛼(𝑥) — вероятность сделать ставку, если на руках
у него карта 𝑥. Поскольку 𝛼 — вероятность, то ее значения 0 ≤ 𝛼 ≤ 1
и 𝛼 = 1 - 𝛼 — это вероятность спасовать. Аналогично, если первый
игрок сделал ставку, то стратегией второго игрока будет функция
𝛽(𝑦) - вероятность поддержать ставку, если у него на руках карта
𝑦. Понятно, что 0 ≤ 𝛽(𝑦) ≤ 1. В процессе игры будут выпадать
различные комбинации карт, и следовательно, выигрыш каждого из
игроков будет случайным. В качестве критерия будем использовать
среднее значение выигрыша. В данной игре если стратегии игроков
𝛼, 𝛽 выбраны, то в силу условий игры средний выигрыш первого
игрока определяется соотношениями:

∙ 1, с вероятностью 𝛼(𝑥)

∙ 1, с вероятностью 𝛼(𝑥)𝛽(𝑦)

∙ (𝑐+ 1)𝑠𝑔𝑛(𝑥− 𝑦), с вероятностью 𝛼(𝑥)𝛽(𝑦)
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где функция 𝑠𝑔𝑛(𝑥− 𝑦) определяется следующим образом:

𝑠𝑔𝑛(𝑥− 𝑦) =

⎧⎨⎩ 1, 𝑥 > 𝑦
−1, 𝑥 < 𝑦
0, 𝑥 = 𝑦

В силу этих соотношений средний выигрыш первого игрока будет
равен

𝐻(𝛼, 𝛽) =

∫︁ 1

0

∫︁ 1

0

[︁
− 𝛼(𝑥) + 𝛼(𝑥)𝛽(𝑦) + (𝑐+ 1)𝑠𝑔𝑛(𝑥− 𝑦)𝛼(𝑥)𝛽(𝑦)

]︁
𝑑𝑥𝑑𝑦

(1)

Теперь игра полностью определена. Мы определили стратегии в
игре и выигрыш. Первый игрок желает максимизировать, а второй
игрок — минимизировать средний выигрыш (1).

2.1 Оптимальные стратегии
Нетрудно понять, какой вид должны иметь оптимальные стратегии.
Для этого представим выигрыш (1) в следующем виде, выделив чле-
ны, содержащие 𝛼(𝑥):

𝐻(𝛼, 𝛽) =

∫︁ 1

0

𝛼(𝑥)
[︁
1 +

∫︁ 1

0

(︁
𝛽(𝑦) + (𝑐+ 1)𝑠𝑔𝑛(𝑥− 𝑦)𝛽(𝑦)

)︁
𝑑𝑦

]︁
𝑑𝑥− 1

(2)

Обозначим выражение в квадратных скобках в (2) за 𝑄(𝑥). Тогда из
(2) следует, что оптимальная стратегия первого игрока, максимизи-
рующая его выигрыш, должна иметь следующий вид.

𝛼*(𝑥) =

⎧⎨⎩ 1, 𝑄(𝑥) > 0
0, 𝑄(𝑥) < 0
∀, 𝑄(𝑥) = 0
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Рис. 1: Функция Q(x)

Поскольку функция 𝑠𝑔𝑛(𝑥 − 𝑦), а вместе с ней и функция 𝑄(𝑥)
неубывающая, то, как видно из рис. 1 (допустим, что функция 𝑄(𝑥)
пересекает ось 𝑂𝑥 в точке 0 ≤ 𝑎 ≤ 1 ), оптимальная стратегия 𝛼*(𝑥)
должна определяться некоторым порогом 𝑎, и если полученная карта
𝑥 имеет значение, меньшее, чем 𝑎, то следует пасовать, в противном
случае — делать ставку.

Аналогично, представляя выигрыш 𝐻(𝛼, 𝛽) в виде

𝐻(𝛼, 𝛽) =

∫︁ 1

0

𝛽(𝑦)
[︁
𝛼(𝑥)(−(𝑐+ 1)𝑠𝑔𝑛(𝑦 − 𝑥)− 1)𝑑𝑥

]︁
𝑑𝑦+

+

∫︁ 1

0

(2𝛼(𝑥)− 1)𝑑𝑥 (3)

мы получаем, что оптимальная стратегия второго игрока 𝛽*(𝑦) так-
же определяется некоторым пороговым значением 𝑏, больше которо-
го он уравнивает ставку, и пасует в противном случае. Найдем эти
оптимальные пороги 𝑎*, 𝑏*.

Предположим, что первый игрок использует стратегию 𝛼 с поро-
гом 𝑎. Тогда проигрыш второго игрока, согласно (3), имеет вид

6



𝐻(𝛼, 𝛽) =

∫︁ 1

0

𝛽(𝑦)𝐺(𝑦)𝑑𝑦 + 2(1− 𝑎)− 1 (4)

𝐺(𝑦) =

∫︁ 1

𝑎

[︁
− (𝑐+ 1)𝑠𝑔𝑛(𝑦 − 𝑥)− 1

]︁
𝑑𝑥

Проведя вычисления, получаем

𝐺(𝑦) =

{︂
𝑐(1− 𝑎), 𝑦 < 𝑎
−2(𝑐+ 1)𝑦 + 𝑎(𝑐+ 2) + 𝑐, 𝑦 ≥ 𝑎

Рис. 2: Функция G(y)

На рис. 2 показан вид функции 𝐺(𝑦), из которого видно, что
оптимальный порог 𝑏 определяется соотношением −2(𝑐+1)𝑏+ 𝑎(𝑐+
2) + 𝑐 = 0, откуда находим

𝑏 =
𝑎(𝑐+ 2) + 𝑐

2(𝑐+ 1)
. (5)

Таким образом, оптимальный порог второго игрока однозначно
определяется значением порога первого игрока. При этом минималь-
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ное значение проигрыша второго игрока равно

𝐻(𝛼, 𝛽) =

∫︁ 1

𝑏

𝛽(𝑦)𝐺(𝑦)𝑑𝑦 + 2(1− 𝑎)− 1 =∫︁ 1

𝑏

[︁
− 2(𝑐+ 1)𝑦 + 𝑎(𝑐+ 2) + 𝑐

]︁
𝑑𝑦 + 2(1− 𝑎)− 1. (6)

После интегрирования получим

𝐻(𝛼, 𝛽) = −(𝑐+ 1)(1− 𝑏2) + [𝑎(𝑐+ 2) + 𝑐](1− 𝑏)− 2𝑎+ 1 =

(𝑐+ 1)𝑏2 − 𝑏[𝑎(𝑐+ 2) + 𝑐] + 𝑎𝑐. (7)

Подставляя оптимальное значение порога 𝑏 из (5) в (7), получим
представление минимального проигрыша второго игрока как функ-
цию аргумента 𝑎:

𝐻(𝑎) =
(𝑎(𝑐+ 2) + 𝑐)2

4(𝑐+ 1)
− (𝑎(𝑐+ 2) + 𝑐)2

2(𝑐+ 1)
+ 𝑎𝑐 =

(𝑐+ 2)2

4(𝑐+ 1)

[︁
− 𝑎2 + 2𝑎

𝑐2

(𝑐+ 2)2
− 𝑐2

(𝑐+ 2)2

]︁
. (8)

Поскольку 𝑎 является стратегией первого игрока, естественно,
что он будет стараться максимизировать минимальный проигрыш
второго игрока (8). Таким образом, окончательно мы приходим к
задаче, в которой нужно найти максимум параболы:

ℎ(𝑎) = −𝑎2 + 2𝑎
𝑐2

(𝑐+ 2)2
− 𝑐2

(𝑐+ 2)2
.
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Рис. 3: Функция h(a)

Вид этой параболы изображен на рис. 3. Ее максимум достигается
в точке

𝑎* = (
𝑐

𝑐+ 2
)2

0 ≤ 𝑎* ≤ 1.

Подставляя это значение в (5), найдем оптимальный порог вто-
рого игрока:

𝑏* =
𝑐

𝑐+ 2
.

При этом значение выигрыша первого игрока (оно будет наилуч-
шим и для первого, и для второго игрока) найдем, подставив опти-
мальный порог 𝑎* в (8):

𝐻* = 𝐻(𝑎*, 𝑏*) =
(𝑐+ 2)2

4(𝑐+ 1)

[︁
(

𝑐

𝑐+ 2
)4 − (

𝑐

𝑐+ 2
)2
]︁
= −(

𝑐

𝑐+ 2
)2.

Мы видим, что значение игры отрицательно, то есть первый иг-
рок находится в невыгодном положении.
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2.2 Особенности оптимального поведения в поке-
ре

Итак, оптимальные стратегии игроков и значение игры найдены. Мы
получили, что оптимальный порог первого игрока меньше, чем у вто-
рого, т.е. он должен быть более осторожен. Значение игры отрица-
тельно, это связано с тем, что ход первого игрока дает некоторую
информацию о его карте второму игроку.

Теперь обсудим вопрос о единственности оптимальных стратегий.
Как мы видели из рис. 2, в случае, если первый игрок использует
оптимальную стратегию 𝛼*(𝑥) с порогом 𝑎* = ( 𝑐

𝑐+2)
2, то наилучшим

ответом второго игрока будет также использование пороговой стра-
тегии 𝛽*(𝑦) с порогом 𝑏* = 𝑐

𝑐+2 , т.е. оптимальная стратегия второго
игрока определяется однозначно.

Теперь зафиксируем стратегию второго игрока с порогом 𝑏* и
найдем наилучший ответ первого игрока. Для этого опять обратимся
к выражению 2 и вычислим функцию 𝑄(𝑥).

Если 𝑥 < 𝑏*, то:

𝑄(𝑥) = 1 +

∫︁ 1

0

(︁
𝛽(𝑦) + (𝑐+ 1)𝑠𝑔𝑛(𝑥− 𝑦)𝛽(𝑦)

)︁
𝑑𝑦 =

= 1 +

∫︁ 𝑏*

0

𝑑𝑦 −
∫︁ 1

𝑏*
(𝑐+ 1)𝑑𝑦 = 1 + 𝑏* − (𝑐+ 1)(1− 𝑏*) = 0.

Если 𝑥 ≥ 𝑏*, то:

𝑄(𝑥) = 1 + 𝑏* +

∫︁ 𝑥

𝑏*
(𝑐+ 1)𝑑𝑦 −

∫︁ 1

𝑥

(𝑐+ 1)𝑑𝑦 =

= 1 + 𝑏* + (𝑐+ 1)(𝑥− 𝑏*)− (𝑐+ 1)(1− 𝑥) = 2(𝑐+ 1)𝑥− 𝑐(𝑏* + 1).
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Рис. 4: Функция Q(x)

Как видно из рис. 4, функция 𝑄(𝑥) на интервале (𝑏*, 1] положи-
тельна, и, следовательно, если у первого игрока карта 𝑥 > 𝑏*, его
наилучшим решением является сделать ставку. Однако если значе-
ние 𝑥 лежит в интервале [0, 𝑏*], то 𝑄(𝑥) = 0 и 𝛼*(𝑥) может принимать
любые значения, так как это не влияет на значение выигрыша (2).
Конечно, найденная нами стратегия с порогом 𝑎* удовлетворяет это-
му условию. Однако интересно, нет ли какой-либо другой стратегии
первого игрока 𝛼(𝑥), для которой оптимальная стратегия второго
игрока совпадет с 𝛽*(𝑦).

Оказывается, такие стратегии существуют. Рассмотрим, напри-
мер, стратегию 𝛼(𝑥) такого вида. Если 𝑥 ≥ 𝑏*, то по-прежнему, пер-
вый игрок делает ставку, если же 𝑥 < 𝑏*, то с вероятностью 𝑝 = 2

𝑐+2
он делает ставку и с вероятностью 𝑝 = 1 − 𝑝 = 𝑐

𝑐+2 пасует. Найдем
наилучший ответ второго игрока для стратегии такого вида. Как и
раньше, представим выигрыш в виде (4). Функция 𝐺(𝑦) теперь имеет
вид:

𝐺(𝑦) =

∫︁ 𝑏*

0

𝑝(−(𝑐+1)𝑠𝑔𝑛(𝑦−𝑥)−1)𝑑𝑥+

∫︁ 1

𝑏*
(−(𝑐+1)𝑠𝑔𝑛(𝑦−𝑥)−1)𝑑𝑥.

Если 𝑦 < 𝑏*, то:
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𝐺(𝑦) = 𝑝

∫︁ 𝑦

0

(−(𝑐+1)−1)𝑑𝑥+𝑝

∫︁ 𝑏*

𝑦

(𝑐+1−1)𝑑𝑥+

∫︁ 1

𝑏*
(𝑐+1−1)𝑑𝑥 =

= −2𝑝(𝑐+ 1)𝑦 + 𝑝𝑐𝑏* + 𝑐(1− 𝑏*).

Если 𝑦 ≥ 𝑏*, то:

𝐺(𝑦) = 𝑝

∫︁ 𝑏*

0

(−𝑐− 2)𝑑𝑥+

∫︁ 𝑦

𝑏*
(−𝑐− 2)𝑑𝑥+

∫︁ 1

𝑦

𝑐𝑑𝑥 =

= −2(𝑐+ 1)𝑦 + (𝑐+ 2)𝑏*(1− 𝑝) + 𝑐.

Рис. 5: Функция G(y)

Вид функции 𝐺(𝑦) изображен на рис.5. Заметим, что в силу вы-
бора 𝑝 𝐺(𝑏*) = 0 и, следовательно, наилучшей стратегией второго
игрока по-прежнему остается стратегия 𝛽*(𝑦).

Таким образом, мы нашли еще одно решение данной игры. Это
решение принципиально отличается от предыдущего для первого иг-
рока. Теперь, даже имея малое значение карты на руках, первый
игрок может сделать ставку. Этот эффект в карточных играх на-
зывается блефом. Игрок изображает, что у него на руках большая
карта, понуждая противника сказать спасовать. Отметим, однако,
что вероятность блефа тем меньше, чем больше значение ставки 𝑐.
Например, для 𝑐 = 100 вероятность блефа должна быть меньше 0.02.
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3 Модель покера с переменной ставкой
В рассмотренной выше модели покера ставка 𝑐 была фиксирована,
однако, в реальной игре она может меняться. Рассмотрим модифика-
цию данной модели с переменной ставкой. Итак, так же как и рань-
ше, первый и второй игроки делают в начале игры взнос, равный
единице. После этого они получают две карты достоинством 𝑥 и 𝑦,
не имея информации о карте противника. На первом шаге первый
игрок делает ставку 𝑐(𝑥), которая зависит от значения его карты 𝑥.
Ход переходит ко второму игроку, и он может либо спасовать, и по-
терять свой взнос в банке, либо поддержать вызов противника. Тогда
он добавляет в банк 𝑐(𝑥), игроки открывают карты, и выигрывает
тот из них, чья карта больше. Итак, в данной модели первый игрок
выигрывает либо единицу, либо (1 + 𝑐(𝑥))𝑠𝑔𝑛(𝑥 − 𝑦). Задачей здесь
является найти оптимальную функцию 𝑐(𝑥) и оптимальный ответ
второго игрока. Эту проблему сформулировал в конце 1950-х годов
Беллман.

Рассмотрим вначале дискретную модель данной игры. Предпо-
ложим, что ставка первого игрока может принимать одно значение
из следующего фиксированного набора 0 < 𝑐1 < ... < 𝑐𝑛. Тогда
стратегией первого игрока является смешанная стратегия 𝛼(𝑥) =
(𝛼1(𝑥), ..., 𝛼𝑛(𝑥)), где 𝛼𝑖(𝑥) - вероятность поставить в игре 𝑐𝑖, 𝑖 =
1, ..., 𝑛, если значение его карты равно 𝑥. Тогда

∑︀𝑛
𝑖=1 𝛼𝑖 = 1. Страте-

гией второго игрока будет стратегия поведения 𝛽(𝑦) = (𝛽1(𝑦), ..., 𝛽𝑛(𝑦)),
где 𝛽𝑖(𝑦) - вероятность уравнять ставку 𝑐𝑖, 0 ≤ 𝛽𝑖 ≤ 1 при выбран-
ной карте 𝑦. Соответственно 𝛽𝑖(𝑦) = 1−𝛽𝑖(𝑦) - вероятность паса при
ставке 𝑐𝑖 и карте 𝑦.

Ожидаемый выигрыш первого игрока равен:

𝐻(𝛼, 𝛽) =

∫︁ 1

0

∫︁ 1

0

𝑛∑︁
𝑖=1

[︁
𝛼𝑖(𝑥)𝛽𝑖(𝑦)+(1+𝑐𝑖)𝑠𝑔𝑛(𝑥−𝑦)𝛼𝑖(𝑥)𝛽𝑖(𝑦)

]︁
𝑑𝑥𝑑𝑦.

(9)

Вначале разберем случай 𝑛 = 2.
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3.1 Модель покера с двумя ставками
Итак, предположим, что первый игрок в зависимости от выбранной
карты 𝑥 может поставить одну из двух ставок 𝑐1 или 𝑐2, 𝑐1 < 𝑐2.
Таким образом, его стратегию можно определить с помощью функ-
ции 𝛼(𝑥). 𝛼(𝑥) - это вероятность ставки 𝑐1. Соответственно 𝛼(𝑥) =
1 − 𝛼(𝑥) - вероятность ставки 𝑐2. У второго игрока стратегия опре-
деляется с помощью двух функций 𝛽1(𝑦), 𝛽2(𝑦), которые обозначают
вероятности поддержать соответственно ставки 𝑐1 и 𝑐2. Функция вы-
игрыша (9) примет вид

𝐻(𝛼, 𝛽) =

∫︁ 1

0

∫︁ 1

0

[︁
𝛼(𝑥)𝛽1(𝑦) + (1 + 𝑐1)𝑠𝑔𝑛(𝑥− 𝑦)𝛼(𝑥)𝛽1(𝑦)+

(1− 𝛼(𝑥))𝛽2(𝑦) + (1 + 𝑐2)𝑠𝑔𝑛(𝑥− 𝑦)(1− 𝛼(𝑥))𝛽2(𝑦)
]︁
𝑑𝑥𝑑𝑦. (10)

Найдем вначале вид оптимальной стратегии второго игрока. Вы-
делим в (10) слагаемые с 𝛽1 и 𝛽2. Они имеют вид

∫︁ 1

0

𝛽1(𝑦)𝑑𝑦
[︁ ∫︁ 1

0

𝛼(𝑥)(−1 + (1 + 𝑐1)𝑠𝑔𝑛(𝑥− 𝑦))𝑑𝑥
]︁
, (11)

∫︁ 1

0

𝛽2(𝑦)𝑑𝑦
[︁ ∫︁ 1

0

(1− 𝛼(𝑥))(−1 + (1 + 𝑐2)𝑠𝑔𝑛(𝑥− 𝑦))𝑑𝑥
]︁
. (12)

Функция 𝑠𝑔𝑛(𝑥−𝑦) не возрастает по 𝑦, следовательно, и выраже-
ния в квадратных скобках в (11)-(12), обозначим их 𝐺𝑖(𝑦), 𝑖 = 1, 2,
также представляют собой невозрастающие функции по 𝑦 (см. рис.
6). Предположим, что функции 𝐺𝑖(𝑦) пересекают ось 𝑂𝑦 на интер-
вале [0, 1] в точках 𝑏𝑖, 𝑖 = 1, 2.
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Рис. 6: Функция 𝐺𝑖(𝑦)

Второй игрок заинтересован минимизировать выражения (11)-
(12). Чтобы интегралы в этих выражениях принимали минимальные
значения, необходимо, чтобы 𝛽𝑖(𝑦) было равно нулю для 𝐺𝑖(𝑦) > 0 и
равно 1 для 𝐺𝑖(𝑦) < 0, 𝑖 = 1, 2. Отсюда его оптимальная стратегия
имеет вид 𝛽𝑖(𝑦) = 𝐼(𝑦 ≥ 𝑏𝑖), 𝑖 = 1, 2, где 𝐼(𝐴) - индикатор множества
𝐴. То есть второй игрок поддерживает ставку первого при доста-
точно больших картах (превышающих порог 𝑏𝑖, 𝑖 = 1, 2). Поскольку
𝑐1 < 𝑐2, то естественно предположить, что порог для поддержания
большей ставки также должен быть больше, т. е. 𝑏1 < 𝑏2. Пороги
𝑏1, 𝑏2 определяются уравнениями 𝐺𝑖(𝑏𝑖) = 0, 𝑖 = 1, 2 или согласно
(11)-(12),

∫︁ 𝑏1

0

(−2− 𝑐1)𝛼(𝑥)𝑑𝑥+

∫︁ 1

𝑏1

𝑐1𝛼(𝑥)𝑑𝑥 = 0,

∫︁ 𝑏2

0

(−2− 𝑐2)𝛼(𝑥)𝑑𝑥+

∫︁ 1

𝑏2

𝑐1𝛼(𝑥)𝑑𝑥 = 0.

Теперь перейдем к построению оптимальной стратегии первого
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игрока 𝛼(𝑥). Выделим в выигрыше (10) выражение с 𝛼(𝑥):∫︁ 1

0

𝛼(𝑥)𝑑𝑥
[︁ ∫︁ 1

0

(𝛽2(𝑦)−𝛽1(𝑦)+𝑠𝑔𝑛(𝑥−𝑦)((1+𝑐1)𝛽1(𝑦)−(1+𝑐2)𝛽2(𝑦)))𝑑𝑦
]︁
.

Выражение в квадратных скобках обозначим 𝑄(𝑥). Тогда для тех
𝑥, где 𝑄(𝑥) < 0, оптимальная стратегия 𝛼(𝑥) будет равна нулю,
для 𝑥, где 𝑄(𝑥) > 0, 𝛼(𝑥) = 1. Там же, где 𝑄(𝑥) = 0, 𝛼(𝑥) может
принимать произвольные значения. После преобразований

𝑄(𝑥) =

∫︁ 𝑥

0

(𝑐1𝛽1(𝑦)− 𝑐2𝛽2(𝑦))𝑑𝑦 +

∫︁ 1

𝑥

((2 + 𝑐2)𝛽2(𝑦)− (2 + 𝑐1)𝛽1(𝑦))𝑑𝑦.

Производная функции 𝑄(𝑥) равна:

𝑄
′
(𝑥) = (2 + 2𝑐1)𝛽1(𝑥)− (2 + 2𝑐2)𝛽2(𝑥).

С учетом вида стратегий 𝛽𝑖(𝑥), 𝑖 = 1, 2, производная принимает
вид:

𝑄
′
(𝑥) =

⎧⎨⎩ 0, 𝑥 ∈ [0, 𝑏1]
2 + 2𝑐1, 𝑥 ∈ (𝑏1, 𝑏2)
−2(𝑐2 − 𝑐1) 𝑥 ∈ [𝑏2, 1]

.

Таким образом функция 𝑄(𝑥) на отрезке [0, 𝑏1] постоянна, на ин-
тервале (𝑏1, 𝑏2) возрастает и на отрезке [𝑏2, 1] убывает.
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Рис. 7: Функция Q(x)

Потребуем, чтобы на интервале [0, 𝑏1] функция 𝑄(𝑥) была равна
нулю и пересекала ось 𝑂𝑥 в некоторой точке 𝑎 на интервале [𝑏2, 1]
(см. рис. 7). Тогда будут иметь место соотношения 𝑏1 < 𝑏2 < 𝑎. Для
этого необходимо выполнение условий

𝑄(0) =

∫︁ 1

𝑏2

(2 + 𝑐2)𝑑𝑦 −
∫︁ 1

𝑏1

(2 + 𝑐1)𝑑𝑦 = 0

и

𝑄(𝑎) =

∫︁ 𝑎

𝑏1

𝑐1𝑑𝑦 −
∫︁ 𝑎

𝑏2

𝑐2𝑑𝑦 +

∫︁ 1

𝑎

(𝑐2 − 𝑐1)𝑑𝑦 = 0.

Упрощая эти условия, получим

(1− 𝑏1)(2 + 𝑐1) = (1− 𝑏2)(2 + 𝑐2),

(𝑐2 − 𝑐1)(2𝑎− 1) = 𝑐2𝑏2 − 𝑐1𝑏1.

При выполнении этих условий оптимальная стратегия первого
игрока будет иметь вид
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𝛼(𝑥) =

⎧⎨⎩ 1, 𝑥 ∈ (𝑏1, 𝑎)
0, 𝑥 ∈ [𝑎, 1]
∀, 𝑥 ∈ [0, 𝑏1]

.

Таким образом условия (11)-(12) можно переписать в виде

∫︁ 𝑏1

0

𝛼(𝑥)𝑑𝑥 =
𝑐1(𝑎− 𝑏1)

2 + 𝑐1
= 𝑏1 −

𝑐2(1− 𝑎)

2 + 𝑐2
. (13)

Таким образом, параметры для определения оптимальных стра-
тегий игроков определяются системой уравнений

(1− 𝑏1)(2 + 𝑐1) = (1− 𝑏2)(2 + 𝑐2) (14)
(𝑐2 − 𝑐1)(2𝑎− 1) = 𝑐2𝑏2 − 𝑐1𝑏1 (15)

𝑐1(𝑎− 𝑏1)

2 + 𝑐1
= 𝑏1 −

𝑐2(1− 𝑎)

2 + 𝑐2
. (16)

Можно показать, что система уравнений (14)-(16) имеет решение
0 ≤ 𝑏1 < 𝑏2 ≤ 𝑎 ≤ 1. Ниже мы покажем это для общего случая.

Особенностью оптимальной стратегии первого игрока является
то, что на интервале [0, 𝑏1] его стратегия может быть произвольной,
лишь бы выполнялось условие (13). Это соответствует стратегии бле-
фа в игре, поскольку для маленьких карт первый игрок может объ-
явить высокую ставку в игре. У второго игрока оптимальная стра-
тегия предписывает при маленьких картах выходить из игры, а при
достаточно больших - поддерживать ту или иную ставку противни-
ка. Например, при 𝑐1 = 2, 𝑐2 = 4 оптимальные параметры такие:
𝑏1 = 0.345, 𝑏2 = 0.563, 𝑎 = 0.891. При картах со значениями меньше
0.345 первый игрок блефует, если же карты больше этого значения,
но меньше 0.891 он ставит ставку 2, а при картах больших 0.891 он
ставит ставку 4. Второй игрок поддерживает соответственно ставку
2, если его карты в интервале [0.345, 0.563], и 4, если они больше
0.563. В других случаях он пасует.
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3.2 Модель покера c n ставками
Теперь предположим, что первый игрок после получения карты 𝑥
может объявить ставку из следующего набора значений 0 < 𝑐1 <
... < 𝑐𝑛. Тогда его стратегией будет смешанная стратегия 𝛼(𝑥) =
(𝛼1(𝑥), ..., 𝛼𝑛(𝑥)) , где 𝛼𝑖(𝑥) представляет вероятность объявить став-
ку 𝑐𝑖. После этого ход переходит ко второму игроку. В зависимости от
выбранной карты 𝑦, он может спасовать и потерять свой взнос в бан-
ке, либо продолжить игру. В последнем случае он должен уравнять
ставку первого игрока. Игроки вскрывают карты, и выигрывает тот,
чье значение больше. Стратегией второго игрока является стратегия
поведения 𝛽(𝑦) = (𝛽1(𝑦), ..., 𝛽𝑛(𝑦)), где 𝛽𝑖(𝑦) - вероятность уравнять
ставку первого игрока, которая равна 𝑐𝑖, 𝑖 = 1, ..., 𝑛. Функция выиг-
рыша имеет вид

𝐻(𝛼, 𝛽) =

∫︁ 1

0

∫︁ 1

0

𝑛∑︁
𝑖=1

[︁
𝛼𝑖(𝑥)𝛽𝑖(𝑦)+

(1 + 𝑐𝑖)𝑠𝑔𝑛(𝑥− 𝑦)𝛼𝑖(𝑥)𝛽𝑖(𝑦)
]︁
𝑑𝑥𝑑𝑦. (17)

Найдем вначале оптимальную стратегию второго игрока. Для
этого перепишем функцию (17) в виде

𝐻(𝛼, 𝛽) =
𝑛∑︁

𝑖=1

∫︁ 1

0

𝛽𝑖(𝑦)𝑑𝑦
[︁ ∫︁ 1

0

𝛼𝑖(𝑥)(−1+(1+𝑐𝑖)𝑠𝑔𝑛(𝑥−𝑦))𝑑𝑥
]︁
+1.

(18)

Обозначим выражение в квадратных скобках как 𝐺𝑖(𝑦). Для каж-
дой фиксированной стратегии 𝛼(𝑥) и ставки 𝑐𝑖 второй игрок заинте-
ресован минимизировать (18). Поэтому его оптимальная стратегия
для любого 𝑖 = 1, ..., 𝑛 должна иметь вид

𝛽𝑖(𝑦) =

{︂
1, 𝐺𝑖(𝑦) < 0
0, 𝐺𝑖(𝑦) > 0

,
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𝐺𝑖(𝑦) = −(2 + 𝑐𝑖)

∫︁ 𝑦

0

𝛼𝑖(𝑥)𝑑𝑥+ 𝑐𝑖

∫︁ 1

𝑦

𝛼𝑖(𝑥)𝑑𝑥.

Легко видеть, что функция 𝐺𝑖(𝑦) не возрастает по 𝑦. Кроме того:

𝐺𝑖(0) = 𝑐𝑖

∫︁ 1

0

𝛼𝑖(𝑥)𝑑𝑥 ≥ 0,

𝐺𝑖(1) = −(2 + 𝑐𝑖)

∫︁ 1

0

𝛼𝑖(𝑥)𝑑𝑥 ≤ 0.

Следовательно, всегда существует корень 𝑏𝑖 уравнения 𝐺𝑖(𝑦) = 0
(см. рис.6).

𝑏𝑖 удовлетворяет уравнению:

∫︁ 𝑏𝑖

0

𝛼𝑖(𝑥)𝑑𝑥 =
𝑐𝑖

2 + 𝑐𝑖

∫︁ 1

𝑏𝑖

𝛼𝑖(𝑥)𝑑𝑥. (19)

Таким образом, оптимальная стратегия второго игрока принима-
ет вид

𝛽𝑖(𝑦) =

{︂
0, 0 ≤ 𝑦 < 𝑏𝑖
1, 𝑏𝑖 ≤ 𝑦 ≤ 1

,

𝑖 = 1, ..., 𝑛.
Заметим, что набор 𝑏𝑖, 𝑖 = 1, ..., 𝑛, удовлетворяющий уравнению

(19) существует для любой стратегии 𝛼(𝑥).
Теперь перейдем к построению оптимальной стратегии первого

игрока. Представим выигрыш (17) в виде

𝐻(𝛼, 𝛽) =
𝑛∑︁

𝑖=1

∫︁ 1

0

𝛼𝑖(𝑥)𝑄𝑖(𝑥)𝑑𝑥, (20)
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𝑄𝑖(𝑥) =

∫︁ 1

0

(𝛽𝑖(𝑦) + (1 + 𝑐𝑖)𝑠𝑔𝑛(𝑥− 𝑦)𝛽𝑖(𝑦))𝑑𝑦 =

= 𝑏𝑖 + (1 + 𝑐𝑖)
(︁∫︁ 𝑥

0

𝛽𝑖(𝑦)𝑑𝑦 −
∫︁ 1

𝑥

𝛽𝑖(𝑦)𝑑𝑦
)︁
. (21)

Для каждого 𝑥 первый игрок ищет стратегию 𝛼(𝑥), которая мак-
симизирует выигрыш (20). Заметим, что это другая оптимизацион-
ная задача, отличная от той, которую мы исследовали в рассужде-
ниях для второго игрока.

Здесь 𝛼(𝑥) - смешанная стратегия,
∑︀𝑛

1 𝛼𝑖(𝑥) = 1. Максимальное
значение выигрыша (20) достигается при таком 𝛼(𝑥), что 𝛼𝑖(𝑥) = 1,
если для данного 𝑥 𝑄𝑖(𝑥) принимает значения большие, чем другие
𝑄𝑗(𝑥), 𝑗 ̸= 𝑖, и 𝛼𝑖(𝑥) = 0 в противном случае. Если же для данного
значения 𝑥 все значения 𝑄𝑖(𝑥) совпадают, то 𝛼(𝑥) может принимать
произвольные значения.

Будем искать оптимальную стратегию 𝛼(𝑥) в специальном ви-
де. Пусть на интервале [0, 𝑏1) все функции 𝑄𝑖(𝑥) совпадают, т.е.
𝑄1(𝑥) = ... = 𝑄𝑛(𝑥). Это будет соответствовать стратегии блефа для
первого игрока. Положим 𝑎1 = 𝑏1. Далее пусть на интервале [𝑎1, 𝑎2)
функция 𝑄1(𝑥) > 𝑚𝑎𝑥{𝑄𝑗(𝑥), 𝑗 ̸= 1}, на интервале [𝑎2, 𝑎3) функция
𝑄2(𝑥) > 𝑚𝑎𝑥{𝑄𝑗(𝑥), 𝑗 ̸= 2} и т.д. На интервале [𝑎𝑛, 1] предполо-
жим, что максимальное значение принимает функция 𝑄𝑛(𝑥). Тогда
оптимальная стратегия первого игрока примет вид

𝛼𝑖(𝑥) =

⎧⎨⎩ ∀, 𝑥 ∈ [0, 𝑏1]
1, 𝑥 ∈ [𝑎𝑖, 𝑎𝑖+1)
0, 𝑥 /∈ [𝑎𝑖, 𝑎𝑖+1), 𝑥 /∈ [0, 𝑏1]

.

Уточним вид функции 𝑄𝑖(𝑥). Упростив (21), получим:

𝑄𝑖(𝑥) =

{︂
𝑏𝑖 − (1 + 𝑐𝑖)(1− 𝑏𝑖), 0 ≤ 𝑥 < 𝑏𝑖
(1 + 𝑐𝑖)(2𝑥− 1)− 𝑐𝑖𝑏𝑖, 𝑏𝑖 ≤ 𝑥 ≤ 1

.

На интервале [0, 𝑏𝑖] функция 𝑄𝑖(𝑥) принимает постоянные значе-
ния. Потребуем, чтобы эти значения для всех функций 𝑄𝑖(𝑥), 𝑖 =
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1, ..., 𝑛 были одинаковы, т.е.

𝑏𝑖 − (1 + 𝑐𝑖)(1− 𝑏𝑖) = 𝑘, 𝑖 = 1, ..., 𝑛

Тогда все 𝑏𝑖, 𝑖 = 1, ..., 𝑛 можно определить по формуле

𝑏𝑖 =
1 + 𝑘 + 𝑐𝑖
2 + 𝑐𝑖

= 1− 1− 𝑘

2 + 𝑐𝑖
, 𝑖 = 1, ..., 𝑛. (22)

Из (22) сразу следует, что 𝑏1 < ... < 𝑏𝑛. Это соответствует ин-
туитивным соображениям, что второй игрок должен поддерживать
более высокую ставку при больших картах.

На интервале [𝑏𝑖, 1] функция 𝑄𝑖(𝑥) является линейной. Обозна-
чим точки пересечения функций 𝑄𝑖−1(𝑥) и 𝑄𝑖(𝑥) через 𝑎𝑖, 𝑖 = 2, ..., 𝑛.
При этом 𝑎1 = 𝑏1. Для того, чтобы оптимальная стратегия 𝛼(𝑥) име-
ла необходимый вид, потребуем, чтобы 𝑎1 < 𝑎2 < ... < 𝑎𝑛. Тогда на
интервале [𝑎𝑖, 𝑎𝑖+1) функция 𝑄𝑖(𝑥) будет максимальной, 𝑖 = 1, ..., 𝑛.
График расположения функций 𝑄𝑖(𝑥), 𝑖 = 1, ..., 𝑛 представлен на
рис. 8.

Рис. 8: Функции 𝑄𝑖(𝑥)
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Точки пересечения 𝑎𝑖 находятся из уравнений

(1 + 𝑐𝑖−1)(2𝑎𝑖 − 1)− 𝑐𝑖𝑏𝑖 = (1 + 𝑐𝑖)(2𝑎𝑖 − 1)− 𝑐𝑖𝑏𝑖, 𝑖 = 2, ..., 𝑛.

Преобразуем и получим:

𝑎𝑖 = 1− 𝑘

(2 + 𝑐𝑖−1)(2 + 𝑐𝑖)
, 𝑖 = 1, ..., 𝑛,

где 𝑘 = 1− 𝑘.
Остается определить 𝑘. Напомним, что оптимальные пороги стра-

тегии второго игрока 𝑏𝑖 удовлетворяли уравнению (19), которое с
учетом вида стратегии 𝛼 примет вид

∫︁ 𝑏1

0

𝛼𝑖(𝑥)𝑑𝑥 =
𝑐𝑖

2 + 𝑐𝑖
(𝑎𝑖+1 − 𝑎𝑖), 𝑖 = 1, ..., 𝑛. (23)

Складывая все уравнения (23) и учитывая условие
∑︀𝑛

𝑖=1 𝛼𝑖(𝑥) =
1, получим

𝑏1 =
𝑛∑︁

𝑖=1

𝑐𝑖
2 + 𝑐𝑖

(𝑎𝑖+1 − 𝑎𝑖).

Откуда

1 + 𝑘 + 𝑐1
2 + 𝑐1

= 𝑘𝐴,

где

𝐴 =
𝑛∑︁

𝑖=1

𝑐𝑖(𝑐𝑖+1 − 𝑐𝑖−1)

(2 + 𝑐𝑖−1)(2 + 𝑐𝑖)2(2 + 𝑐𝑖+1)
.

Здесь в сумме мы считаем 𝑐0 = −1, 𝑐𝑛+1 = ∞. Отсюда
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𝑘 = 1− 2 + 𝑐1
𝐴(2 + 𝑐1) + 1

.

Очевидно, что A и вместе с ним 𝑘 положительны. Следовательно,
последовательность 𝑎𝑖 является монотонной, 𝑎1 < 𝑎2 < ... < 𝑎𝑛.
Кроме того, все пороги 𝑎𝑖 лежат в промежутке [0, 1].

Подытожим проделанные рассуждения. Оптимальная стратегия
первого игрока имеет вид

𝛼*
𝑖 (𝑥) =

⎧⎨⎩ ∀𝑓 : (23), 𝑥 ∈ [0, 𝑏1]
1, 𝑥 ∈ [𝑎𝑖, 𝑎𝑖+1)
0, 𝑥 ̸∈ [0, 𝑏1] , 𝑥 ̸∈ [𝑎𝑖, 𝑎𝑖+1)

,

где

𝑎𝑖 = 1− 𝑘

(2 + 𝑐𝑖−1)(2 + 𝑐𝑖)
,

𝑖 = 2, ..., 𝑛.

Заметим, что на интервале [0, 𝑏1) первый игрок блефует. При ма-
лых значениях карт он может поставить любую ставку. Для опреде-
ленности можно разбить отрезок [0, 𝑏1) , последовательно начиная от
нуля, на интервалы длиной 𝑐𝑖(𝑎𝑖+1−𝑎𝑖)/(2+𝑐𝑖), 𝑖 = 1, ..., 𝑛 (их сумма
по построению равна 𝑏1) и положить 𝛼*

𝑖 (𝑥) = 1 на соответствующем
интервале. Для 𝑥 > 𝑏1 первый игрок должен ставить ставку 𝑐𝑖 на
интервале [𝑎𝑖, 𝑎𝑖+1) .

Оптимальная стратегия второго игрока определяется как

𝛽*
𝑖 (𝑦) =

{︂
0, 0 ≤ 𝑦 < 𝑏𝑖
1, 𝑏𝑖 ≤ 𝑦 ≤ 1

,

где 𝑏𝑖 = (1 + 𝑘 + 𝑐𝑖)/(2 + 𝑐𝑖), 𝑖 = 1, ..., 𝑛.
Значение игры найдем из (20):
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𝐻(𝛼*, 𝛽*) =
𝑛∑︁

𝑖=1

∫︁ 1

0

𝛼*
𝑖 (𝑥)𝑄𝑖(𝑥)𝑑𝑥 =∫︁ 𝑏1

0

𝑘
𝑛∑︁

𝑖=1

𝛼*
𝑖 (𝑥)𝑑𝑥+

𝑛∑︁
𝑖=1

∫︁ 𝑎𝑖+1

𝑎𝑖

𝑄𝑖(𝑥)𝑑𝑥 =

𝑘𝑏1 +
𝑛∑︁

𝑖=1

(𝑎𝑖+1 − 𝑎𝑖)
[︁
(1 + 𝑐𝑖)(𝑎𝑖 + 𝑎𝑖+1)− (1 + 𝑐𝑖 + 𝑐𝑖𝑏𝑖)

]︁
. (24)

Например, для игры, в которой размеры ставок равны 𝑐1 = 1,
𝑐2 = 3, 𝑐3 = 6, последовательно находим параметры

𝐴 =
𝑐1(𝑐2 + 1)

(2 + 𝑐1)2(2 + 𝑐2)
+

𝑐2(𝑐3 − 𝑐2)

(2 + 𝑐1)(2 + 𝑐2)2(2 + 𝑐3)
+

𝑐3
(2 + 𝑐2)(2 + 𝑐3)2

= 0.122.

𝑘 = 1− 2 + 𝑐1
𝐴(2 + 𝑐1) + 1

= −1.193.

И затем оптимальные стратегии

𝑏1 =
1 + 𝑘 + 𝑐1
2 + 𝑐1

= 0.269,

𝑏2 =
1 + 𝑘 + 𝑐2
2 + 𝑐2

= 0.561,

𝑏3 =
1 + 𝑘 + 𝑐3
2 + 𝑐3

= 0.725,

𝑎1 = 𝑏1 = 0.269,

𝑎2 = 1− 1− 𝑘

(2 + 𝑐1)(2 + 𝑐2)
= 0.854,

𝑎3 = 1− 1− 𝑘

(2 + 𝑐2)(2 + 𝑐3)
= 0.945.
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Наконец, значение игры равно

𝐻(𝛼*, 𝛽*) = −0.117.

Значение игры отрицательно, поэтому игра невыгодна для пер-
вого игрока.

3.3 Асимптотические свойства стратегий в моде-
ли покера с переменной ставкой

Вернемся к проблеме, сформулированной в начале главы. Предпо-
ложим, что получив карту 𝑥, первый игрок может объявить ставку
𝑐(𝑥), которая может принимать произвольное значение из 𝑅. Вос-
пользуемся результатами, полученными в предыдущем разделе. Вы-
берем некоторое положительное число 𝐵 и нанесем на отрезке [0, 𝐵]
равномерную сеть {𝐵

𝑛 ,
2𝐵
𝑛 , ..., 𝐵}, где 𝑛 - некоторое целое число. Бу-

дем считать узлы этой сетки значениями ставок в игре, т. е. 𝑐𝑖 = 𝑖𝐵
𝑛 .

При этом мы будем неограниченно увеличивать 𝑛 и 𝑖, но таким об-
разом, чтобы сохранялось равенство 𝑖𝐵

𝑛 = 𝑐 для некоторого 𝑐. После
этого мы будем неограниченно увеличивать 𝐵. Найдем предельные
значения параметров, определяющих оптимальные стратегии игро-
ков в игре с такими ставками. Найдем вначале предел 𝐴:

𝐴 =
𝑛∑︁

𝑖=1

𝑐𝑖(𝑐𝑖+1 − 𝑐𝑖−1)

(2 + 𝑐𝑖−1)(2 + 𝑐𝑖)2(2 + 𝑐𝑖+1)
=

𝑛∑︁
𝑖=1

𝐵 𝑖
𝑛2

𝐵
𝑛

(2 +𝐵 𝑖−1
𝑛 )(2 +𝐵 𝑖

𝑛)
2(𝐵 𝑖+1

𝑛 )
.

При 𝑛 → ∞ данная интегральная сумма сходится к интегралу

𝐴 →
∫︁ 𝐵

0

2𝑐

(2 + 𝑐)4
𝑑𝑐 =

1

12
− 3𝐵

3(2 +𝐵)3
− 1

3(2 +𝐵)2
,

который при 𝐵 → ∞ имеет предел 𝐴 = 1
12 . Отсюда получаем

предельное значение для 𝑘, 𝑘 = 1− 2
2𝐴+1 = −5

7 .
Теперь мы можем определить пороговое значение для блефа пер-

вого игрока. 𝑏1 = 𝑎1 = 1 − 1−𝑘
2+𝐵/𝑛− > 1 − 1+ 5

7

2 = 1
7 . Итак, если у
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первого игрока значение карт меньше 1
7 , он блефует. Теперь перей-

дем к определению размера ставки, которую первый игрок должен
ставить в зависимости от значения его карты 𝑥. Согласно определе-
нию найденной выше оптимальной стратегии первого игрока 𝛼*(𝑥),
он ставит ставку 𝑐𝑖 в интервале [𝑎𝑖, 𝑎𝑖+1) , где

𝑎𝑖 = 1− 1− 𝑘

(2 + 𝑐𝑖−1)(2 + 𝑐𝑖)
.

Таким образом, ставка 𝑐 = 𝑐(𝑥), которая соответствует карте 𝑥,
удовлетворяет уравнению

𝑥 = 1− 1− 𝑘

(2 + 𝑐)2
,

откуда находим

𝑐(𝑥) =

√︃
12

7(1− 𝑥)
− 2. (25)

Выражение (25) неотрицательно при 𝑥 ≥ 4
7 , следовательно, при

1
7 ≤ 𝑥 < 4

7 первый игрок не ставит ничего. При значении карт 𝑥 ≥ 4
7

размер его ставки определяется формулой (25).
Определим асимптотическое поведение второго игрока. При 𝑦 <

1
7 он пасует. Если же 𝑦 ≥ 1

7 , второй игрок согласно (22) поддерживает
заявленную ставку первого игрока 𝑐 при значении карт, больших

𝑦 ≥ 1− 1− 𝑘

2 + 𝑐
= 1− 12

7(2 + 𝑐)
.

Поведение оптимальных стратегий обоих игроков представлено
на рис. 9.
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Рис. 9: Оптимальные стратегии в покере

Остается вычислить предельное значение игры. Воспользуемся
выражением (24). Переходя к пределу, получим

𝑘𝑏1+

∫︁ ∞

0

2(1− 𝑘)

(2 + 𝑐)3
(1+ 𝑐)

[︁
2(1− 1− 𝑘

(2 + 𝑐)2
)− (1+

𝑐(1 + 𝑘 + 𝑐)

(1 + 𝑐)(2 + 𝑐)
)
]︁
𝑑𝑐 =

− 5

49
+
24

7

∫︁ ∞

0

1 + 𝑐

(2 + 𝑐)3

(︁
1− 24

7(2 + 𝑐)2
−

𝑐(27 + 𝑐)

(1 + 𝑐)(2 + 𝑐)

)︁
𝑑𝑐 = − 5

49
+
18

49
=

13

49
.

(26)

Заметим, однако, что к предельному значению (26) нужно до-
бавить выигрыш, который получается при значении карт первого
игрока в интервале

[︀
1
7 ,

4
7

]︀
, т.е.

∫︁ 4
7

1
7

(︁1
7
+

∫︁ 1

1
7

𝑠𝑔𝑛(𝑥− 𝑦)𝑑𝑦
)︁
𝑑𝑥 =

3

49

∫︁ 4
7

1
7

(2𝑥− 8

7
)𝑑𝑥 = − 6

49
. (27)

Складывая (26) и (27), получим

𝐻(𝛼*, 𝛽*) =
13

49
− 6

49
=

1

7
.

Итак, предельное значение игры равно 1
7 , она выгодна первому

игроку. Оптимальные стратегии полностью определены. Интерес-
но, что выигрыш и стратегии определяются через число 7, которое
неожиданно появилось в результате аналитических вычислений.
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4 Модель покера с несколькими раунда-
ми ставок

Рассмотрим модель, в рамках которой игра длится более одного ра-
унда. Пусть 𝑛 - количество раундов. Перед началом игры оба игрока
делают обязательный взнос 𝑎, 𝑎 > 0. Затем первый игрок получает
лучшую карту с вероятностью 𝑃 ≥ 0 и худшую, соответственно, с
вероятностью 1− 𝑃 ≥ 0. В каждом раунде 0 < 𝑘 < 𝑛 первый игрок
может сделать ставку 𝑏𝑘 > 0, либо спасовать. Если он пасует, то про-
исходит вскрытие карт и выигрывает игрок с лучшей картой. Если
же первый игрок делает ставку, то ход переходит ко второму игроку.
У него есть 2 варианта: спасовать или уравнять ставку первого игро-
ка. Если он пасует, то игра заканчивается и деньги забирает первый
игрок. Иначе, начинается новый раунд 𝑘+1. Если игра дошла до ра-
унда 𝑘 = 𝑛, то в случае ставки от первого игрока и уравнивания этой
ставки вторым игроком происходит вскрытие и выигрывает игрок с
лучшей картой.

Предполагается, что на лучшей карте первый игрок всегда делает
ставку(повышает). На худшей карте он либо сразу пасует, либо по-
вышает до раунда 𝑘 и пасует в следующем раунде. Это соответствует
стратегии блефа(стратегия 𝑘). Всего он располагает 𝑛+ 1 стратеги-
ей. Аналогично, стратегия 𝑗 = 1, ..., 𝑛 второго игрока означает, что
он уравнивает ставки до раунда 𝑗, затем пасует. Если 𝑗 = 0, то вто-
рой игрок пасует сразу. Матрица выигрышей при этом определяется
следующим образом: 𝑎𝑖𝑗 = 𝑃𝑠𝑗 − (1 − 𝑃 )𝑠𝑖, если 𝑖 ≤ 𝑗, 𝑎𝑖𝑗 = 𝑠𝑗, в
противном случае.

Введем следующие обозначения:

𝑟𝑘 =
𝑏𝑘

2(𝑎+ 𝑏1 + ...+ 𝑏𝑘−1) + 𝑏𝑘
,

𝑄𝑘 = (
𝑘∏︁

𝑗=1

(1 + 𝑟𝑗))
−1, 𝑄0 = 1,
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𝑃𝑘 =
𝑠𝑘 + 𝑎

2𝑠𝑘
, 𝑠𝑘 = 𝑎+ 𝑏1 + ...+ 𝑏𝑘, 𝑠0 = 𝑎, 𝑘 = 1, ..., 𝑛.

𝑝𝑘 =

∏︀𝑛
𝑖=𝑘(1 + 𝑟𝑖)− 1∏︀𝑏

𝑗=𝑘−1(1 + 𝑟𝑖)− 1

Лемма. Для всех 𝑘 = 1, ..., 𝑛 выполняется неравенство 𝑄𝑘 <
𝑃𝑘.

Доказательство:

𝑄𝑘 =
(2𝑠0 + 𝑏1)...(2𝑠𝑘−1 + 𝑏𝑘)

2𝑘𝑠1...𝑠𝑘
= 𝑄𝑘−1

2𝑠𝑘−1 + 𝑏𝑘
2𝑠𝑘

= 𝑄𝑘−1
2𝑠𝑘 − 𝑏𝑘

2𝑠𝑘
.

Отсюда следует, что 𝑄𝑘 < 𝑄𝑘−1.
Покажем, что 𝑃𝑘 < 𝑃𝑘−1.

𝑃𝑘

𝑃𝑘−1
=

𝑠𝑘 + 𝑎

2𝑠𝑘

2𝑠𝑘−1

𝑠𝑘−1 + 𝑎
=

𝑠𝑘−1(𝑠𝑘 + 𝑎)

𝑠𝑘(𝑠𝑘−1 + 𝑎)
=

𝑠𝑘−1𝑠𝑘 + 𝑎𝑠𝑘 − 𝑎𝑏𝑘
𝑠𝑘−1𝑠𝑘 + 𝑎𝑠𝑘

=

= 1− 𝑎𝑏𝑘
𝑠𝑘−1𝑠𝑘 + 𝑎𝑠𝑘

< 1.

Следовательно:

𝑄𝑘 = 𝑄𝑘−1
2𝑠𝑘 − 𝑏𝑘

2𝑠𝑘
,

𝑃𝑘 = 𝑃𝑘−1

(︁
1− 𝑎𝑏𝑘

𝑠𝑘−1𝑠𝑘 + 𝑎𝑠𝑘

)︁
.

Исходная лемма верна, если:

𝑄𝑘−1
2𝑠𝑘 − 𝑏𝑘

2𝑠𝑘
< 𝑃𝑘−1

(︁
1− 𝑎𝑏𝑘

𝑠𝑘−1𝑠𝑘 + 𝑎𝑠𝑘

)︁
,
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𝑄𝑘−1 < 𝑃𝑘−1

(︁
1− 𝑎𝑏𝑘

𝑠𝑘−1𝑠𝑘 + 𝑎𝑠𝑘

)︁ 2𝑠𝑘
2𝑠𝑘 − 𝑏𝑘

, (28)

Проведем доказательство по индукции. При 𝑘 = 2 покажем, что
𝑄2 < 𝑃2:

𝑄2 − 𝑃2 =
(2𝑎+ 𝑏1)(2𝑎+ 2𝑏1 + 𝑏2)

4(𝑎+ 𝑏1)(𝑎+ 𝑏1 + 𝑏2)
− 2𝑎+ 𝑏1 + 𝑏2

2(𝑎+ 𝑏1 + 𝑏2)
=

=
(2𝑎+ 𝑏1)(2𝑎+ 2𝑏1 + 𝑏2)− 2(2𝑎+ 𝑏1 + 𝑏2)(𝑎+ 𝑏1)

4(𝑎+ 𝑏1)(𝑎+ 𝑏1 + 𝑏2)
=

= − 𝑏1𝑏2
4(𝑎+ 𝑏1)(𝑎+ 𝑏1 + 𝑏2)

< 0

Пусть верно 𝑄𝑘−1 < 𝑃𝑘−1. Покажем, что и 𝑄𝑘 < 𝑃𝑘. Из (28)
следует, что нам необходимо проверить условие:(︁

1− 𝑎𝑏𝑘
𝑠𝑘−1𝑠𝑘 + 𝑎𝑠𝑘

)︁ 2𝑠𝑘
2𝑠𝑘 − 𝑏𝑘

> 1.

Если оно выполняется, то лемма доказана.

(︁
1− 𝑎𝑏𝑘

𝑠𝑘−1𝑠𝑘 + 𝑎𝑠𝑘

)︁ 2𝑠𝑘
2𝑠𝑘 − 𝑏𝑘

=
2(𝑠2𝑘 − 𝑠𝑘𝑏𝑘 + 𝑎𝑠𝑘 − 𝑎𝑏𝑘)

(𝑠𝑘 − 𝑏𝑘 + 𝑎)(2𝑠𝑘 − 𝑏𝑘)
=

=
2𝑠2𝑘 − 2𝑠𝑘𝑏𝑘 + 2𝑎𝑠𝑘 − 2𝑎𝑏𝑘

2𝑠2𝑘 − 2𝑠𝑘𝑏𝑘 + 2𝑎𝑠𝑘 − 2𝑎𝑏𝑘 + 𝑏𝑘(𝑏𝑘 + 𝑎− 𝑠𝑘)
=

𝐴

𝐴+ 𝑏𝑘(𝑏𝑘 + 𝑎− 𝑠𝑘)
.

Так как 𝑏𝑘 + 𝑎− 𝑠𝑘 < 0, то 𝐴
𝐴+𝑏𝑘(𝑏𝑘+𝑎−𝑠𝑘)

> 1. Отсюда немедленно
следует, что 𝑄𝑘 < 𝑃𝑘. Что и требовалось доказать.
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Утверждение. При 𝑄𝑘 < 𝑃 ≤ 𝑄𝑘−1, 𝑃 < 𝑃𝑛 значение игры рав-
но 𝑎, второй игрок пасует в первом раунде(использует оптималь-
ную стратегию 0), а первый игрок имеет оптимальную стратегию
вида

𝑥*𝑖 =

⎧⎨⎩ 0, 𝑖 = 0, 𝑘 + 1, ..., 𝑛
𝑟𝑖𝑄𝑖/(1− 𝑃 ), 𝑖 = 1, ..., 𝑘 − 1
(𝑄𝑘−1 − 𝑃 )/(1− 𝑃 ), 𝑖 = 𝑘

.

Если 𝑃𝑘 ≤ 𝑃 < 𝑃𝑘−1, то матрица игры имеет седловую точ-
ку: значение игры равно 𝑎, первый игрок использует любую опти-
мальную стратегию 𝑖 ∈ {𝑘, ..., 𝑛}, а второй игрок - оптимальную
стратегию 0.

Доказательство:
Покажем, что стратегия 𝑥*𝑖 действительно оптимальна. Для на-

чала рассмотрим столбец матрицы 𝑎𝑖𝑗, 𝑗 = 1. Умножим скалярно
этот столбец на соответствующую стратегию.

𝑟1𝑄1

1− 𝑃
(2𝑃 − 1)𝑠1 + 𝑠1

∑︀𝑘−1
𝑖=2 𝑟𝑖𝑄𝑖 +𝑄𝑘−1 − 𝑃

1− 𝑃
) =

= 𝑠1
𝑟1𝑄1

1− 𝑃
(2𝑃 − 1) + 𝑠1

1− 𝑟1𝑄1 − 𝑃

1− 𝑃
=

=
𝑠1

1− 𝑃
(𝑟1𝑄1(2𝑃 − 1) + 1− 𝑃 − 𝑟1𝑄1) =

=
𝑠1

1− 𝑃
(2(𝑃 − 1)𝑟1𝑄1 + 1− 𝑃 ) =

= 𝑠1(1− 2𝑟1𝑄1) = 𝑠1(1−
𝑏1
𝑠1
)) = 𝑎.

Покажем, что для каждого столбца 𝑗 = 1, ..., 𝑘 соответствующие
скалярные произведения равны между собой и их значения при этом
равны 𝑎. Если это, действительно так, то утверждение доказано.

Фиксируем столбец 𝑗. Тогда соответствующее скалярное произ-
ведение равно:
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𝑗∑︁
𝑖=1

𝑟𝑖𝑄𝑖

1− 𝑃
(𝑃𝑠𝑗 − (1− 𝑃 )𝑠𝑖) + 𝑠𝑗

∑︀𝑘−1
𝑖=𝑗+1 𝑟𝑖𝑄𝑖 +𝑄𝑘−1 − 𝑃

1− 𝑃
=

=

𝑗∑︁
𝑖=1

𝑟𝑖𝑄𝑖𝑃𝑠𝑗
1− 𝑃

−
𝑗∑︁

𝑖=1

𝑟𝑖𝑄𝑖𝑠𝑖(1− 𝑃 )

1− 𝑃
+ 𝑠𝑗(

1−
∑︀𝑗

𝑖=1 𝑟𝑖𝑄𝑖

1− 𝑃
) =

=
𝑃𝑠𝑗(1−𝑄𝑗)

1− 𝑃
+ 𝑠𝑗

𝑄𝑗 − 𝑃

1− 𝑃
− (𝑠𝑗𝑄𝑗 − 𝑎) =

=
𝑃𝑠𝑗 − 𝑃𝑠𝑗𝑄𝑗 − 𝑃𝑠𝑗 + 𝑠𝑗𝑄𝑗

1− 𝑃
− 𝑠𝑗𝑄𝑗 + 𝑎 = 𝑎.

То есть для каждого столбца 𝑗 = 1, ..., 𝑘 значения одинаковы
и равны 𝑎. Отсюда следует, что стратегий 𝑥*𝑖 оптимальная. Что и
требовалось доказать.

В процессе доказательства мы использовали следующую лемму.
Лемма. Для всех 𝑗 выполняется равенство 𝑠𝑗𝑄𝑗−𝑎 =

∑︀𝑗
𝑖=1 𝑟𝑖𝑄𝑖𝑠𝑖.

Доказательство:
Доказательство проведем по индукции. При 𝑗 = 1:

𝑠1𝑄1 − 𝑎 = 𝑟1𝑄1𝑠1,

(1− 𝑟1)𝑠1𝑄1 = 𝑎,

(1− 𝑟1)𝑠1𝑄1 = 𝑎,

(
1− 𝑟1
1 + 𝑟1

)𝑠1 = 𝑎.

Последнее верно, так как:

𝑠𝑗−1 = (
1− 𝑟𝑗
1 + 𝑟𝑗

)𝑠𝑗.

Пусть лемма верна при 𝑗. Докажем, что она верна при 𝑗 + 1.
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𝑠𝑗+1𝑄𝑗+1 − 𝑎 =

𝑗+1∑︁
𝑖=1

𝑟𝑖𝑄𝑖𝑠𝑖.

Вычтем из этого равенства равенство при 𝑗, получаем:

𝑠𝑗+1𝑄𝑗+1 − 𝑠𝑗𝑄𝑗 = 𝑟𝑗+1𝑄𝑗+1𝑠𝑗+1,

𝑠𝑗+1(
1− 𝑟𝑗+1

1 + 𝑟𝑗−1
)𝑄𝑗 = 𝑠𝑗𝑄𝑗,

𝑠𝑗+1(
1− 𝑟𝑗+1

1 + 𝑟𝑗−1
) = 𝑠𝑗.

Последнее верно. Следовательно равенство выполняется при 𝑗+1,
т.е. лемма верна.

Утверждение. Если 𝑃 < 𝑄𝑛, то оптимальным решением для
второго игрока будет пас на раунде 𝑘 c вероятностью 𝑝 = 𝑟𝑘, оп-
тимальным решением для первого игрока будет ставка с лучшей
картой. С худшей картой оптимальной будет следующая страте-
гия: ставка в первом раунде с вероятностью 𝑝1 =

𝑃
1−𝑃

1−𝑄𝑛

𝑄𝑛
, ставка

в раунде 𝑘 > 1 c вероятностью 𝑝𝑘. Значение игры 𝑉 = 𝑎(2𝑃−𝑄𝑛)
𝑄𝑛

.
Доказательство:
Пусть 𝐴𝑖𝑗 - ожидаемый выигрыш первого игрока при использова-

нии им стратегии 𝑖 и при использовании вторым игроком стратегии
𝑗.

𝐴𝑖𝑗 =

{︂
𝑃𝑠𝑗 − (1− 𝑃 )𝑠𝑖, 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
𝑠𝑗, 0 ≤ 𝑗 < 𝑖 ≤ 𝑛

.

Пусть (𝜎0, ..., 𝜎𝑛) - смешанная стратегия второго игрока, где 𝜎𝑗 яв-
ляется вероятностью того, что второй игрок уравняет ставку первого
игрока ровно 𝑗 раз. Если второй игрок использует эту стратегию, а
первый использует стратегию 𝑖, то средний выигрыш равен:
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𝑉𝑖 =
𝑛∑︁

𝑗=0

𝐴𝑖𝑗𝜎𝑗 =
𝑖−1∑︁
𝑗=0

𝑠𝑗𝜎𝑗 + 𝑃
𝑛∑︁
𝑗=𝑖

𝑠𝑗𝜎𝑗 − (1− 𝑃 )𝑠𝑖

𝑛∑︁
𝑗=𝑖

𝜎𝑗 =

= 𝑃
𝑛∑︁

𝑗=0

𝑠𝑗𝜎𝑗 + (1− 𝑃 )
𝑖−1∑︁
𝑗=0

𝑠𝑗𝜎𝑗 − (1− 𝑃 )𝑠𝑖

𝑛∑︁
𝑗=𝑖

𝜎𝑗.

Найдем 𝜎𝑖 из условия независимости 𝑉𝑖 от 𝑖.

𝑉𝑘 − 𝑉𝑘−1 = (1− 𝑃 )
[︁
(𝑠𝑘 + 𝑠𝑘−1)𝜎𝑘−1 − (𝑠𝑘 − 𝑠𝑘−1)

𝑛∑︁
𝑗−𝑘−1

𝜎𝑗

]︁
= 0.

Отсюда следует для 𝑘 = 1, ..., 𝑛:

𝜎𝑘−1∑︀𝑛
𝑗=𝑘−1 𝜎𝑗

=
𝑠𝑘 − 𝑠𝑘−1

𝑠𝑘 + 𝑠𝑘−1
= 𝑟𝑘. (29)

Уравнение (29) описывает 𝜎𝑘. Фактически, его левая часть пред-
ставляет собой вероятность паса вторым игроком в раунде 𝑘.

𝑉0 = 𝑃
𝑛∑︁

𝑗=0

𝑠𝑗𝜎𝑗 − (1− 𝑃 )𝑠0,

𝑉𝑛 =
𝑛−1∑︁
𝑗=0

𝑠𝑗𝜎𝑗 + 𝑃𝑠𝑛𝜎𝑛 − (1− 𝑃 )𝑠𝑛𝜎𝑛 =
𝑛∑︁

𝑗=0

𝑠𝑗𝜎𝑗 − 2(1− 𝑃 )𝑠𝑛𝜎𝑛.

Из условия 𝑉0 = 𝑉𝑛 получаем, что
∑︀𝑛

𝑗=0 𝑠𝑗𝜎𝑗 = 2𝑠𝑛𝜎𝑛−𝑠0. Следо-
вательно, 𝑉0 = 2𝑃𝑠𝑛𝜎𝑛−𝑠0. Используя (29) имеем 𝑉0 = 2𝑃𝑠𝑛

∏︀𝑛
𝑖=1(1−

𝑟𝑖)− 𝑠0.
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Так как 1− 𝑟𝑘 =
2𝑠𝑘−1

𝑠𝑘+𝑠𝑘−1
, а 1 + 𝑟𝑘 =

2𝑠𝑘
𝑠𝑘+𝑠𝑘−1

, то

𝑠𝑛

𝑛∏︁
𝑘=1

(1− 𝑟𝑘) = 𝑠0

𝑛∏︁
𝑘=1

(1 + 𝑟𝑘).

𝑉0 = 𝑎
(︁
2𝑃

𝑛∏︁
𝑘=1

(1 + 𝑟𝑘)− 1
)︁
= 𝑎

(︁2𝑃
𝑄𝑛

− 1
)︁
.

Теперь перейдем к первому игроку. Пусть 𝜋 = (𝜋0, ..., 𝜋𝑛) - сме-
шанная стратегия первого игрока, где 𝜋𝑖 - вероятность сделать ровно
𝑖 ставок. Если первый игрок использует такую смешанную страте-
гию, а второй игрок использует стратегию 𝑗, то средний выигрыш
при 0 ≤ 𝑗 ≤ 𝑛 равен:

𝑊𝑗 =
𝑛∑︁

𝑖=0

𝜋𝑖𝐴𝑖𝑗 =

𝑗∑︁
𝑖=0

𝜋𝑖(𝑃𝑠𝑗 − (1− 𝑃 )𝑠𝑖) +
𝑛∑︁

𝑖=𝑗+1

𝜋𝑖𝑠𝑗 =

= 𝑃𝑠𝑗 + (1− 𝑃 )𝑠𝑗

𝑛∑︁
𝑖=𝑗+1

𝜋𝑖 − (1− 𝑃 )

𝑗∑︁
𝑖=0

𝑠𝑖𝜋𝑖.

Приравнивая 𝑊𝑗 к 𝑊𝑗−1 для 0 < 𝑗 ≤ 𝑛, получим:

𝑃 (𝑠𝑗 − 𝑠𝑗−1) + (1− 𝑃 )(𝑠𝑗 − 𝑠𝑗−1)
𝑛∑︁

𝑖=𝑗+1

𝜋𝑖 − (1− 𝑃 )(𝑠𝑗 + 𝑠𝑗−1)𝜋𝑗 = 0,

𝜋𝑗 =
𝑃

1− 𝑃
𝑟𝑗 + 𝑟𝑗

𝑛∑︁
𝑖=𝑗+1

𝜋𝑖.

Так как 𝜋𝑛 = 𝑟𝑛
𝑃

1−𝑃 и
∑︀𝑛

𝑖=𝑗+1 𝜋𝑖 =
𝑃

1−𝑃

[︁∏︀𝑛
𝑖=𝑗+1(1+ 𝑟𝑖)− 1

]︁
, то по-

ведение первого игрока в раунды 1 < 𝑗 ≤ 𝑛 описывается следующим
образом:
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𝑝𝑗 =

∑︀𝑛
𝑖=𝑗 𝜋𝑖∑︀𝑛

𝑖=𝑗−1 𝜋𝑖
=

∏︀𝑛
𝑖=𝑗(1 + 𝑟𝑖)− 1∏︀𝑛

𝑖=𝑗−1(1 + 𝑟𝑖)− 1
.

Стратегия в первом раунде:

𝑝1 = 1− 𝜋0 =
𝑛∑︁

𝑖=1

𝜋𝑖 =
𝑃

1− 𝑃

[︁ 𝑛∏︁
𝑖=1

(1 + 𝑟𝑖)− 1
]︁
.

Покажем, что 𝑊0 = 𝑉0.

𝑊0 = 𝑃𝑠0 + (1− 𝑃 )𝑠0

𝑛∑︁
𝑖=1

𝜋𝑖 − (1− 𝑃 )𝑠0𝜋0 = 2𝑃𝑠0

𝑛∏︁
𝑖=1

(1 + 𝑟𝑖)− 𝑠0 = 𝑉0.

То есть 𝑊0 = 𝑉0 является значением игры. А значит утверждение
верно. Что и требовалось доказать.
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5 Заключение
В данной работе представлены следующие результаты:

1. Расчет оптимальных стратегий в модели покера с фиксирован-
ной ставкой.

2. Исследование единственности оптимальных стратегий.

3. Расчет оптимальных стратегий в модели с двумя ставками.

4. Расчет оптимальных стратегий в модели с конечным числом
ставок.

5. Исследование асимптотических свойств стратегий.

6. Расчет оптимальных стратегий в модели с 𝑛 раундами ставок.

При исследовании моделей были сделаны предположения о рав-
номерном распределении значения карты 𝑥, а также независимость
случайных величин 𝑥, 𝑦. В рамках этих предположений мы рассчи-
тали в численном виде стратегии для каждой рассмотренной модели
покера.
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